DAIMLER
Sustainability Management & Environment@Daimler

I. Organisation, Scope & Targets
II. Holistic approach towards Environmental Challenges
III. Production related Issues
IV. CO₂ & Electrification
V. CASE

Dr. Udo Hartmann, Head Group Environmental Protection & Energy Management
Our Sustainability Management Daimler Group

Corporate Sustainability Board (CSB)

<table>
<thead>
<tr>
<th>Department</th>
<th>Board of Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Resources</td>
<td>Member of the Board of Management/Co-Chair CSB reports to the General Management</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Policy and External Relations</td>
<td></td>
</tr>
<tr>
<td>Purchasing</td>
<td></td>
</tr>
<tr>
<td>Group Research & MB Cars Development</td>
<td></td>
</tr>
<tr>
<td>Integrity and Legal Affairs</td>
<td></td>
</tr>
<tr>
<td>Environmental Protection</td>
<td></td>
</tr>
</tbody>
</table>

Daimler Group Companies

- **Mercedes-Benz Cars**
- **Daimler Trucks**
- **Mercedes-Benz Vans**
- **Daimler Buses**
- **Daimler Financial Services**
Responsibilities and interfaces of Corporate Environmental Protection

Board of Management

Determine goals and areas of activity

Politics & Society

Analyze legislation and social environmental trends

Product

Production

Push worldwide implementation of goals and ensure legal compliance

Environmental Officer

Communication & Dialogue

Stakeholder & Customer

Business Units

Daimler AG
Climate Protection & Energy

<table>
<thead>
<tr>
<th></th>
<th>Europa</th>
<th>Weltweit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction CO₂ emissions passenger cars</td>
<td>-30% 2007 - 2016</td>
<td>Reduction CO₂ emissions passenger cars and Light-Duty-Trucks USA -25% 2012 - 2019</td>
</tr>
<tr>
<td>Reduced consumption CV heavy</td>
<td>-20% 2005 - 2020</td>
<td>Reduced consumption CV heavy (NAFTA) -10% 2015 - 2019</td>
</tr>
<tr>
<td>Reduced consumption of buses</td>
<td>-20% 2005 - 2020</td>
<td></td>
</tr>
</tbody>
</table>

Reduction of CO₂ and nitrogen oxide emissions over the entire life cycle for each new model generation

Achieve a leading position in premium segment of electric and hybrid vehicles

Air Quality & Health

Market launch of ten models, which conform to the future legislation Real Driving Emissions (Step 1)

Ensure allergy sufferer friendly interiors for all new passenger car models

Resource Conservation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of renewable raw materials (MBC)</td>
<td>+25% 2010 - 2015</td>
<td></td>
</tr>
<tr>
<td>Use of recyclates (MBC)</td>
<td>+25% 2010 - 2015</td>
<td></td>
</tr>
<tr>
<td>Evaluate recourse efficiency of MBC</td>
<td></td>
<td>By 2020</td>
</tr>
<tr>
<td>Increased use of car2go</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of a hydrogen infrastructure</td>
<td></td>
<td>400 By 2023</td>
</tr>
</tbody>
</table>

New in 2015
I. Organisation, Scope & Targets
II. Holistic approach towards Environmental Challenges
III. Production related Issues
IV. CO₂ & Electrification
V. CASE
Elements of the environmental management system RD with focus on design for environment

Mercedes-Benz Development Process

Plan
1. Daimler Green Strategy
2. Environmental policy/program

Do
3. Design for environment as central element of the environmental management system in R&D

Check
4. Environmental audit
5. Management Review

ISO 14001 EM-system
ISO 14006 Design for Environmental aspects
ISO TR 14062 Environmental aspects

Quality
Cost
Time
Environment

Strategy phase
Technology phase
Vehicle phase
Production phase

Consumption/CO₂-Emissions
Exhaust Emissions
Green Materials
Recycling
Prohibited subs./Indoor Emissions
Acoustic/Noise

Climate protection & air quality
Resource Conservation
Health

Life Cycle Assessment

Plan → Do → Check → Act
Challenges for research & development of automobiles

Balancing of disparate requirements in a permanent task in Research & Development

Within the different environmental targets contradictory effects are possible
For our Products a look at the whole life cycle is crucial – E-Class Plug-In Hybrid E 350 e

Production

Supply chain | Daimler production | Fuel supply | Driving emissions

Utilization phase (250 tKm)

E 300 Predecessor - 2009 | E 300 New - 2016 | E 350e Hybrid - water power | E 350e Hybrid - EU-electricity

All values in tons CO₂

Production

<table>
<thead>
<tr>
<th>Supply chain</th>
<th>Daimler production</th>
<th>Fuel supply</th>
<th>Driving emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>1.5</td>
<td>12.9</td>
<td>9.5</td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>6.7</td>
<td></td>
</tr>
</tbody>
</table>

Utilization phase (250 tKm)

<table>
<thead>
<tr>
<th>E 300 Predecessor - 2009</th>
<th>E 300 New - 2016</th>
<th>E 350e Hybrid - water power</th>
<th>E 350e Hybrid - EU-electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.8 tons CO₂</td>
<td>52.7 tons CO₂</td>
<td>25.0 tons CO₂</td>
<td>36.0 tons CO₂</td>
</tr>
<tr>
<td>-25%</td>
<td>-64%</td>
<td>-5%</td>
<td>-49%</td>
</tr>
</tbody>
</table>

Sum

- All values in tons CO₂

Daimler AG
The resource input of C 250 and C 350 e
Comparison of Material Composition

+ 270 kg additional weight of C 350 e compared with C 250

Comparison of Modules [kg] (C 250 vs. C 350 e)

- Steel/Ferrous Materials
- Light Metal
- Polymer Material
- Other Metals
- Operating Liquids
- Other Materials

<table>
<thead>
<tr>
<th>Module</th>
<th>Mass [kg] C 250</th>
<th>Mass [kg] C 350 e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterieur</td>
<td>1,705</td>
<td>1,975</td>
</tr>
<tr>
<td>Interieur</td>
<td>1,435</td>
<td>1,645</td>
</tr>
<tr>
<td>Suspension</td>
<td>-2</td>
<td>25</td>
</tr>
<tr>
<td>Drive rod/control rod</td>
<td>-12</td>
<td>66</td>
</tr>
<tr>
<td>Electricity/Electronics</td>
<td>-17</td>
<td>80</td>
</tr>
<tr>
<td>SPARE wheel well, HV Crash package</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>17” Wheels, Breaks, Pneumatic Susp</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>50l Tank, Cooling Circuit, E-Engine</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Li-Ion Battery, E/E, Cabling etc.</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>
Remanufacturing / Product Recycling
New Life for Used Parts

Over 12,000 Parts in Reman Portfolio - incl. E-Drive Components...

...with significant environmental benefits

-15t CO₂
New Parts Mix
Reman
- 95%

-0.5t CO₂
Exchange Transmissions G281
Reman
- 60%
E-Mobility thought to the end
World's largest 2nd-use battery storage (13MW) in operation
I. Organisation, Scope & Targets
II. Holistic approach towards Environmental Challenges
III. Production related Issues
IV. CO₂ & Electrification
V. CASE
Despite massive quantity increase, we reduced essential environmental impacts of **Daimler plants** in 2015.

CO₂

3,231,000 t
-1%

Waste Water

9.2 mio. m³
19%

Removal

121,000 t
-39%

Recovery

343,000 t
+13%

Units

292,000
+12%

1.7 mio.
+9%

508,000
+2%

29,000
-9%

Produced vehicle without joint ventures/contract manufacture
The relative environmental performance of MBC production improved significantly compared to the previous year.

- **Energy Consumption**: -5.5% per veh.
- **CO₂ Emissions**: -5.7% per veh.
- **Waste amount**: -3.9% per veh.
- **Water Consumption**: -2.2% per veh.
- **VOC Emissions**: -1.8% per veh.

Production

Units 2015: 292,000

Changes to 2014:
- 1.7 Mio: +12%
- 508,000: +9%
- 29,000: +2%
- *Produced vehicle without joint ventures/contract manufacture

Units 2014: 293,000

Changes to 2013:
- 1.7 Mio: -9%
- 508,000: -9%
- 29,000: -9%
Production: Technical Modules to improve environmental performance

Powertrain
- NanoSlide Microcoating in aluminum engines
- Laser Cleaning instead of degrease
- Energy-Manager for Machine Tools

Body Construction
- Energy Optimization Robots
- Analysis Product Effect for energy demand
- Laser welding (RobScan) instead of WPS

Surface
- Integrated Coating Process IP2 primer-less painting
- Energy Efficient Dryer
- Energy-optimized Pretreatment

Assembly/Logistics
- Energy Optimized Conveyor Technology
- Cycle Time Optimization
- Building Energy Management

Process optimization in all plant to reduce resources demand, especially focusing on the energy issue
And how do we achieve these values...

For example new Nanoslide Coating Technology

- Aluminum Engine Block
- Grey Cast Iron Cylinder Liners
- Nanoslide Coating

Process Optimization

(2nd Generation*)

Mechanically Roughening
instead of
High-Pressure Water Jet

Electric Energy
- ca. 700 MWh/a per module (Plan: 4 modules)
- ca. 22,500 MWh over life cycle

Process Water
- ca. 15,000 m³/a per module (Plan: 4 modules)
- ca. 480,000 m³ water over life cycle

Recirculation of aluminum chips
- Reduction of 8% primary aluminum
- Elimination of 15 t/a aluminum slurry

*FAME = Family of Modular Engines = new family of state-of-the-art
ku = kilo units
I. Organisation, Scope & Targets
II. Holistic approach towards Environmental Challenges
III. Production related Issues
IV. CO₂ & Electrification
V. CASE
Our road to emission-free driving
Mercedes-Benz Cars Fleet in Europe

Daimler AG
Our road to emission-free driving

High-tech combustion engines

Consequent hybridization

Electric vehicles with battery and fuel-cell
Powerful and efficient: The new 4-Cylinder Diesel OM 654 sets standards in terms of environmental compatibility

- 17% Weight Reduction
- 24% Friction Losses
- 13% CO$_2$-Reduction
- 80% NOx-Reduction
- 14% Performance Increase
- 11% Improved Acceleration

- Aluminum-Crankase
- Nanoslide Coating
- Stepped Combustion Bowls
- Engine-Related Emission Control
Introduction of 10 plug-in-hybrid vehicles by 2017

- S-Class
- GLE
- GLC
- GLC COUPE
- C-Class
- C-Class Estate
- C-Class LWB
- E-Class

Years:
- 2014
- 2015
- 2016
- 2017
Electric drive vehicles
Next generation fuel-cell system: huge technological progress

2010: Underfloor package
- 206 g Platinum
- 4 kW / m² active area
- Screw compressor

2017: Compartment package
- 20 g Platinum
- 9 kW / m² active area
- Electric turbo charger with turbine

- 30% reduction fuel cell engine size
- 90% reduction of Platinum
- 30% higher electric range in future vehicles
- 40% higher system performance
Emission regulations and battery technology development favour battery cost position

- EV >= conventional
- HV battery system costs
- Conventional powertrain costs

<table>
<thead>
<tr>
<th>Year</th>
<th>Expected Cost (€ / kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>200 - 300</td>
</tr>
<tr>
<td>2020</td>
<td>150</td>
</tr>
<tr>
<td>2025</td>
<td>100</td>
</tr>
<tr>
<td>2030</td>
<td>200 - 300</td>
</tr>
</tbody>
</table>
Ambitious Re-Definition of our EV market targets

Ready for the market

EV Share
Mercedes-Benz Cars
Sales 2025

Greater China
NAFTA
WEU

Highest Potential EV Share
Mercedes-Benz Cars 2025

-illustrative-
Electric Line Up extended into the Future

- SLS AMG Coupé Electric Drive
- B 250 e
- smart fortwo electric drive
- smart electric drive - fortwo and forfour
- Mercedes-Benz GLC F-CELL

Intelligent EV-Architecture

Battery-electric vehicle with up to 500 km range
Foundation of new Mercedes-Benz electric vehicle strategy
Modular set up of next generation drive train technologies will allow a variety of derivatives.

Modular Battery Concept

Modular eDrive Concept

Front Axle Rear Axle

Large

Medium

Small

Illustrative
Investment of 500 million euros in our second battery plant in Germany

- Production space stocked up from 20,000 to 60,000 m²
- 2nd plant start of operations: summer 2017
- Production of Li-Ion batteries for hybrid as well as electric vehicles and energy storage systems

Deutsche ACCUMOTIVE GmbH & Co. KG, Kamenz, Germany
I. Organisation, Scope & Targets
II. Holistic approach towards Environmental Challenges
III. Production related Issues
IV. CO₂ & Electrification
V. CASE
Today: one car for different mobility cases. Tomorrow: possibly the most suitable car „on-demand“.

We are about to re-invent personal mobility
moovel – find, book and pay

moovel

- Public transport
- Carsharing
- Railway
- Taxi
- Bikesharing
Forging ahead with increasing business in Mobility Services

<table>
<thead>
<tr>
<th></th>
<th>CAR2GO</th>
<th>MYTAXI</th>
<th>Combined change*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members</td>
<td>2,100,000</td>
<td>3,400,000</td>
<td>+77%</td>
</tr>
<tr>
<td>Cities</td>
<td>30</td>
<td>43</td>
<td>+22%</td>
</tr>
<tr>
<td>Transactions</td>
<td>16 mill.</td>
<td>7 mill.</td>
<td>+39%</td>
</tr>
</tbody>
</table>

* car2go and mytaxi combined 09/16 (YTD) vs. 09/15 (YTD)
mytaxi and Hailo create Europe’s largest taxi e-hailing company

The two innovative leaders in the field of taxi e-hailing are joining forces.

Customers enjoy various forms of mobility with a transparent overview and easy-to-pay services.

Another strategic step in making Daimler Financial Services a leader of mobility solutions and platforms.
Leadership in Future Mobility will be determined by the combination of the four dimensions:

- E-Mobility
- Autonomous Driving
- Shared Mobility
- Digitalized Eco System

Mobility of the Future
More Information at

www.Mercedes-Benz.com
Innovation – Sustainable mobility
www.Daimler.com
Sustainability
Disclaimer

This document contains forward-looking statements that reflect our current views about future events. The words “anticipate,” “assume,” “believe,” “estimate,” “expect,” “intend,” “may,” ”can,” “could,” “plan,” “project,” “should” and similar expressions are used to identify forward-looking statements. These statements are subject to many risks and uncertainties, including an adverse development of global economic conditions, in particular a decline of demand in our most important markets; a deterioration of our refinancing possibilities on the credit and financial markets; events of force majeure including natural disasters, acts of terrorism, political unrest, armed conflicts, industrial accidents and their effects on our sales, purchasing, production or financial services activities; changes in currency exchange rates; a shift in consumer preferences towards smaller, lower-margin vehicles; a possible lack of acceptance of our products or services which limits our ability to achieve prices and adequately utilize our production capacities; price increases for fuel or raw materials; disruption of production due to shortages of materials, labor strikes or supplier insolvencies; a decline in resale prices of used vehicles; the effective implementation of cost-reduction and efficiency-optimization measures; the business outlook for companies in which we hold a significant equity interest; the successful implementation of strategic cooperations and joint ventures; changes in laws, regulations and government policies, particularly those relating to vehicle emissions, fuel economy and safety; the resolution of pending government investigations or of investigations requested by governments and the conclusion of pending or threatened future legal proceedings; and other risks and uncertainties, some of which we describe under the heading “Risk and Opportunity Report” in the current Annual Report. If any of these risks and uncertainties materializes or if the assumptions underlying any of our forward-looking statements prove to be incorrect, the actual results may be materially different from those we express or imply by such statements. We do not intend or assume any obligation to update these forward-looking statements since they are based solely on the circumstances at the date of publication.