The new Mercedes-Benz EQC. Active and passive safety

The EQC (combined power consumption: 20,8 – 19,7 kWh/100 km; combined CO₂ emissions: 0 g/km)** is equipped with the latest-generation of Mercedes-Benz driving assistance systems, which provide cooperative support for drivers. When it comes to passive safety too, the EQC meets the highest of demands: in addition to the usual, extensive programme of crash tests, Mercedes-Benz applies further, particularly stringent safety standards to the battery and all component parts carrying electrical current.

If Active Distance Assist DISTRONIC with route-based speed adaptation is activated, the EQC is able to recognise and respond to tailbacks or slow-moving traffic before the driver becomes aware of the hazard. When a tailback is recognised (and if the driver does not choose a different response), DISTRONIC reduces the speed to around 100 km/h as a precaution. This can significantly reduce the risk of approaching the end of an unexpected tailback at high speed.

Once the tailback dissolves, the EQC accelerates back up to the speed preset for Active Distance Assist DISTRONIC with route-based speed adaptation. If the driver has not set a specific speed, this is the recommended motorway speed of 130 km/h in the case of Germany, and it can be individually adapted for the current motorway journey. If traffic signs differ from this, the signposted speed limit is given priority.

When driving in tailbacks, the rescue lane function becomes active: When a tailback is recognised on a motorway, the speed is below 60 km/h and lane markings are recognised, the vehicle is guided along the outer lane marking without crossing it. If no lane markings are recognised, the EQC takes its lead from the vehicle ahead.

In stop-and-go traffic on motorways and similar roads, stops of up to 30 seconds are possible within which the EQC can automatically move off and follow the traffic ahead.

Active Brake Assist in the Driving Assistance package has now been supplemented with a turn-off function: If there is a risk of collision with an oncoming vehicle when turning off, the EQC can be braked within the speed range that is typical of such driving manoeuvres. Braking intervention takes place if the driver signals the intention to turn off (indicators) and the vehicle can be braked to a stop before crossing the detected lane marking. Oncoming vehicles are recognised by the long-range radar sensor at the front and the stereo multipurpose camera.

PRE-SAFE®: preventive occupant protection

Mercedes-Benz is the pioneer in reversible, preventive occupant protection. These are measures that can help mitigate the consequences of accidents. With the help of various sensors and information from ESP® or the assistance systems, the PRE-SAFE® system is able to recognise critical driving situations in advance and initiate preventive occupant protection measures if an accident threatens. These include e.g. reversible belt tensioning, automatic closing of open side windows and the sliding sunroof, and movement of the front passenger seat backrest to a more favourable crash position.

PRE-SAFE® PLUS can recognise an imminent rear-end collision and warn following traffic by flashing the rear hazard warning lights at a high frequency. If the danger of a collision persists, the system can also firmly apply the brakes of the stationary vehicle, reducing the risk of whiplash injuries by reducing the forward jolt caused by an impact from the rear. This can also reduce the danger of secondary collisions, e.g. with pedestrians or vehicles ahead at road junctions. Immediately before impact, the PRE-SAFE® anticipatory occupant protection measures are deployed.

Modern technology and EQC-specific safety concept

The vehicle structure of the EQC allows for the special requirements of the electrical components and battery and is configured to achieve the hallmark high safety level. For example, a new subframe surrounds the drive components located in the front section, and this unit is supported by the usual mounting points. As the battery is housed in the vehicle floor, the EQC also has a low centre of gravity. This reduces the risk of a rollover.

Crash gaps are integrated between the wings and the doors, and like the robust door handles they make it easier to open the doors after a frontal collision.

The high-voltage system: cut-off facilities in the event of a crash

The extensive experience of Mercedes-Benz with high-voltage drive systems has led to a multi-stage safety concept that deploys in the event of an accident.

Firstly, thanks to the specific design features of the EQC, the likelihood of an external short circuit caused by an accident is considerably reduced. The battery is surrounded by a robust frame with an integral crash structure. Deformation elements are installed between the frame and the battery, and these are able to absorb additional forces in the event of a severe side impact.

A battery protection shield in the front area of the battery is able to prevent the energy storage unit from being pierced by foreign objects.

The high-voltage system can also be shut down automatically in a crash, depending on its severity. A distinction is made between a reversible and an irreversible cut-off. In the case of a reversible cut-off, which occurs in less severe accidents, it is possible to switch the high-voltage system back on if a prior insulation measurement detects no faults. This means that vehicles still capable of being driven can continue their journey. Only in the case of very severe accidents, where the vehicle is anyway usually incapable of being driven, is the high-voltage system shut down irreversibly and unable to be activated without a repair. When shutting down, there is a provision to ensure that within a few seconds there is no residual voltage in the high-voltage system outside the battery that could cause injury.

There are also shutdown points where emergency teams can deactivate the high-voltage system manually. The cut-off switch is located in the engine compartment. In addition there is an alternative shutdown point in the form of a marked cable loop as a cutting point in the fuse box on the driver's side of the cockpit. This is intended for use by the emergency services if they are unable to reach the shutdown switch in the motor compartment.

Another feature of the comprehensive high-voltage safety concept is that the charging process is automatically stopped if an impact is detected when stationary at a quick-charging station (DC charging). During a charging process, the vehicle's onboard electrical system and therefore the airbag control unit is usually switched off. So that the charging process is nonetheless ended during a possible impact when quick-charging the vehicle at a DC station, an additional impact sensor system is integrated into the DC box. If it detects a collision with the vehicle, the charging process is automatically stopped.

The battery: multi-stage protection concept for normal operation

The battery itself also features its own multi-stage safety system for day-to-day operation. This includes e.g. monitoring the temperature, voltage and insulation. In normal operation, if a fault is detected here, it can lead to the battery being shut down. A continuously self-monitoring safety system prevents overheating and overloading in different operating states.

We use cookies

We want to make our website more user-friendly and continuously improve it. If you continue to use the website, you agree to the use of cookies.